
Auton Robot (2013) 34:327–346
DOI 10.1007/s10514-013-9328-1

DCOB: Action space for reinforcement learning
of high DoF robots

Akihiko Yamaguchi · Jun Takamatsu ·
Tsukasa Ogasawara

Received: 21 November 2011 / Accepted: 28 February 2013 / Published online: 29 March 2013
© Springer Science+Business Media New York 2013

Abstract Reinforcement learning (RL) for robot control is
an important technology for future robots since it enables us
to design a robot’s behavior using the reward function. How-
ever, RL for high degree-of-freedom robot control is still
an open issue. This paper proposes a discrete action space
DCOB which is generated from the basis functions (BFs)
given to approximate a value function. The remarkable fea-
ture is that, by reducing the number of BFs to enable the
robot to learn quickly the value function, the size of DCOB
is also reduced, which improves the learning speed. In addi-
tion, a method WF-DCOB is proposed to enhance the perfor-
mance, where wire-fitting is utilized to search for continuous
actions around each discrete action of DCOB. We apply the
proposed methods to motion learning tasks of a simulated
humanoid robot and a real spider robot. The experimental
results demonstrate outstanding performance.

Keywords Reinforcement learning · Action space ·
Motion learning · Humanoid robot · Crawling

1 Introduction

High-DoF (degree of freedom) robots, typified by humanoid
robots, have the ability of performing a variety of motions. In
most cases, their behavior is preprogrammed by their devel-
opers. However, designing behaviors by the end-users will

Electronic supplementary material The online version of this
article (doi:10.1007/s10514-013-9328-1) contains supplementary
material, which is available to authorized users.

A. Yamaguchi (B) · J. Takamatsu · T. Ogasawara
Graduate School of Information Science, Nara Institute of Science and
Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
e-mail: ay@akiyam.sakura.ne.jp

be essential in the future when the robots become familiar
to us. Reinforcement learning (RL) is such a technology,
with which the end-users can design a behavior by a reward
function that encodes the behavior’s objective. We treat a
learning-from-scratch case of RL where the robot learns a
task with no task-specific prior knowledge. In particular,
the task-specific prior knowledge consists of data coming
from a reward function of the task, such as a value function.
RL methods for the learning-from-scratch case have wider
applicability than those that require prior knowledge. Many
researchers apply RL methods to robot control, e.g. (Zhang
and Rössler 2004; Kimura et al. 2001; Gaskett et al. 2000).
However, RL to control a high-DoF robot is still an open
problem.

A major and promising approach is using the dynamic
motor primitives with an RL method (Peters et al. 2003;
Kober and Peters 2009). A notable feature is its applicabil-
ity to motion learning tasks of a high-DoF robot. This tech-
nique is based on imitation learning, i.e. the robot does not
learn from scratch; the method learns a policy represented
by a vector field initialized around the reference trajectory.
Figure 1a illustrates the vector field and the instances of the
exploration trajectory in the state space. We refer to such
kind of exploration as the trajectory-wise exploration. Mean-
while, discrete action spaces are used in some RL applica-
tions (Uchibe and Doya 2004; Takahashi and Asada 2003;
Tham and Prager 1994; Kirchner 1998). The advantages of
discrete action spaces are:

(A) A graph search-like exploration is available by using an
action value function (Sutton and Barto 1998; Sedgewick
and Wayne 2011), which enables the robot to explore
widely in the possible behavior space. Figure 1b illus-
trates the instances of the exploration trajectory in the
state space where a discrete action space is used.

123

http://dx.doi.org/10.1007/s10514-013-9328-1

328 Auton Robot (2013) 34:327–346

(a) (b)

Fig. 1 Illustration of a trajectory-wise exploration (a) and a graph
search-like exploration (b) in the state space of a robot. In both fig-
ures, the lines denote the instances of the exploration trajectory. a The
arrows denote a vector field initialized around a reference trajectory,
and the exploration policy is assumed to be the Gaussian policy. b Each
dotted arrow denotes an action, and the exploration policy (learned from
scratch) is assumed to be the Boltzmann policy

(B) In general, learning in a continuous action space is more
difficult than learning in a discrete action space (Sutton
and Barto 1998).

Thus, a discrete action space is supposed to be one of the real-
istic solutions to the learning-from-scratch case. However,
there are few general ways to design a discrete action space.
Though a typical way is dividing independently each dimen-
sion of the command space of the robot, such a method has
a practical issue: the size of the action space increases expo-
nentially with respect to the dimensionality of the command
space. In addition, there is no discrete action space that can
prevent performance degradation caused by the discretiza-
tion. Thus, conventional discrete action spaces are inefficient
in RL to control a high-DoF robot.

This paper aims to develop an RL method which is effi-
cient in the learning-from-scratch case of high-DoF robots.
First, we propose a discrete action space DCOB which is gen-
erated from the basis functions (BFs) given to approximate
a value function. DCOB works with any RL method that has
the capability to learn in a discrete action space (see Fig. 2).
Each action in DCOB is a trajectory that is directed to the
center of a target BF, which is the origin of the name. The
remarkable feature is that, by reducing the number of BFs
to enable the robot to learn quickly the value function, the
size of DCOB is also reduced, which improves still further
the learning speed. Naturally, RL in DCOB has the stability
due to being a discrete space. Thus, DCOB has the capabil-
ity to learn efficiently in the learning-from-scratch case of
high-DoF robots.

Though working efficiently in large domains, DCOB suf-
fers from degradation caused by the discretization. Thus, we
extend DCOB so that the search area changes from the dis-
crete points to continuous regions around the discrete actions
in DCOB, in order to improve the ability to acquire perfor-

(a)

(b)

Fig. 2 Overview of DCOB. a DCOB is a discrete action space gener-
ated from BFs. An action in DCOB selected by the RL agent is converted
into a command sequence for the robot. b Acquired motion is generated
by a sequence of the actions in DCOB

mance. This method is named WF-DCOB because of utiliz-
ing wire-fitting (Baird and Klopf 1993) to approximate the
value function in the continuous action space. WF-DCOB
performs the graph search-like (wide) exploration in the con-
tinuous action space; this nature is inherited from DCOB.
Thus, WF-DCOB also has the capability to learn efficiently
in the learning-from-scratch case of high-DoF robots.

The most remarkable contribution of this paper is achiev-
ing the graph search-like exploration (Fig. 1b) even in large
domains by cooperating with an action value function-based
RL method. Most of the similar methods (e.g. Miyamoto et al.
2004) and state-of-the-art methods (e.g. Theodorou et al.
2010) use a simple exploration policy, such as a policy using
Gaussian noise, which may cause a narrow exploration like
Fig. 1a. We consider that such a poor exploration is not suit-
able for the learning-from-scratch case of high-DoF robots.
The detailed discussion is given in Sect. 8.

Since having some requirements, the proposed methods
are mainly applicable to articulated robots, such as legged
robots including humanoid robots, and manipulators. The
precise requirements are given in Sect. 4.2. We apply the
proposed methods to motion learning tasks of a simulated
humanoid robot, a real spider, and a dinosaur robot. Espe-
cially in the humanoid robot experiments, we investigate their
capabilities in several DoF configurations. The experimen-
tal results demonstrate outstanding advantages of the pro-
posed methods both in learning speed and ability to acquire
performance, compared to conventional action spaces. Fur-
thermore, we find that the difference in performance between
DCOB and WF-DCOB depends on the conditions, such as the
DoF configuration. The experimental results provide guide-
lines for choosing DCOB or WF-DCOB.

123

Auton Robot (2013) 34:327–346 329

This paper is organized as follows. Section 2 introduces
RL and function approximators. Section 3 outlines the pro-
posed methods. Section 4 describes an action converter used
in DCOB and WF-DCOB. Section 5 defines DCOB and
WF-DCOB. Section 6 introduces BF allocation methods.
Section7 demonstrates the results of the experiments. Section
8 discusses the theoretical basis of the proposed methods, its
applicability, and the related work. Section 9 concludes this
paper.

2 Preliminaries

This section briefly introduces an RL algorithm used in this
paper, and a linear and a nonlinear function approximator.

2.1 Reinforcement learning

The purpose of the RL method is that a learning system
(agent) whose input is an observable state xn ∈ X and a
reward Rn ∈ R, and whose output is an action un ∈ U ,
acquires the policy π(xn) : X → U that maximizes the
expected discounted return E

[∑∞
k=1 γ k−1 Rn+k

]
where n ∈

N = {0, 1, . . . } denotes the time step and γ ∈ [0, 1) denotes
a discount factor. In this paper, X denotes a continuous state
space, U denotes a continuous action space, and A denotes
a discrete action space. In value-function-based RL meth-
ods, an action value function Q(x, u) : X × U → R is
learned to represent the expected discounted return by tak-
ing an action u from an observable state x. Then, the opti-
mal action rule is obtained from the greedy policy π(x) =
arg maxu Q(x, u). We use the Peng’s Q(λ)-learning algo-
rithm (Peng and Williams 1994), which is an on-line RL
method, i.e. the update procedure is applied after each action.

2.2 Function approximators

Next, we describe two function approximators for the action
value functions Q(x, u). For a continuous state space X and
a discrete action space A (the DCOB case), we use a linear
function approximator because of its stability. When both
the state and the action space X ,U are continuous (the WF-
DCOB case), we employ wire-fitting.

2.2.1 Linear function approximator (LFA) with NGnet

For a continuous state x ∈ X and a discrete action a ∈
A, we let Q(x, a) = θ�a φ(x), where φ(x) = (φ1(x), . . . ,

φ|K|(x))� denotes the output of BFs at a state x, K = {k |
k = 1, 2, . . .} denotes a set of BFs, and θa ∈ R

|K|×1 denotes a
parameter related to an action a. In the learning-from-scratch
case, every θa is initialized by zero.

As an exploration policy, we introduce the Boltzmann
selection method (Sutton and Barto 1998), which has a tem-
perature parameter τ ; letting τ = 0 gives the greedy pol-
icy. For BFs, we use Normalized Gaussian Network (NGnet)
(Sato and Ishii 2000) which is a popular function approxi-
mator in RL applications, e.g. (Morimoto and Doya 2001).
In NGnet, φk(x) is given by

φk(x) = G
(
x;μk,Σk

)

∑
k′∈K G

(
x;μk′ ,Σk′

) , (1)

where G(x;μ,Σ) denotes a Gaussian function with mean μ

and covariance matrix Σ . In this paper, K is predefined and
{μk,Σk | k ∈ K} are treated as fixed parameters.

In the following, we refer to the linear function approxi-
mator with NGnet as LFA-NGnet.

2.2.2 Wire-fitting

Wire-fitting (Baird and Klopf 1993) is a function approxi-
mator of Q(x, u) for a continuous state x ∈ X and a con-
tinuous action u ∈ U , which interpolates a set of control
wires W = {i |i = 1, 2, . . . }. Each control wire i ∈ W
consists of two function approximators qi (x) : X → R

and ui (x) : X → U , where qi encodes an action value,
and ui encodes an action. The notable feature of wire-fitting
is that we can maximize Q(x, u) w.r.t. u by evaluating only
{qi (x) | i ∈W}; this feature is independent from the kinds of
function approximators qi (x), ui (x). In this paper, we employ
LFA-NGnet for qi (x) and a constant vector for ui (x); that is,
qi (x) = θ�i φ(x), ui (x) = Ui . This configuration makes it
simple to design WF-DCOB as an extension of DCOB. The
detail is described in Appendix A.

3 Overview of proposed methods

The discrete action space DCOB is compact, has the abil-
ity to acquire high performance motions, and is therefore
applicable to RL in large domains. The proposed action space
DCOB is generated from a set of basis functions (BFs) given
to approximate a value function. DCOB enables to acquire
higher performance than a conventional discrete action space
that has the same size as DCOB. The key technique is that
the motion caused by each action is adjusted for the resolu-
tion of the BFs; such actions are considered to be suitable
for learning the policy with the BFs. Section 4 describes the
details of the methods that clarify the reasons of the higher
performance. Moreover, reducing the number of BFs by BF
allocation methods reduces the size of DCOB, since DCOB
is generated from the BFs. Thus, DCOB has advantages in
both learning speed and ability to acquire performance. Natu-
rally, a graph search-like (wide) exploration is available with
DCOB.

123

330 Auton Robot (2013) 34:327–346

Fig. 3 Relations of the proposed methods; BFTrans, DCOB, and WF-
DCOB. BFTrans is an action converter from the agent’s action into
a command sequence for the robot. DCOB is a discrete action space
obtained by discretizing the input space of BFTrans. WF-DCOB directly
learns in BFTrans, but the actions are constrained around the actions in
DCOB. Thus, WF-DCOB is regarded as an extension of DCOB.

DCOB consists of an action converter named BFTrans
and discretization using BFs. We assume that the parameters
of each BF include a center state like a Gaussian function.
BFTrans outputs a command sequence from an input consist-
ing of target joint angles and a motion speed. This converter
provides a continuous action space for RL; the input space
of BFTrans is the action space in this case. The joint angle
trajectory generated by this command sequence is adjusted
for the resolution of the BFs [see Fig. 3 (BFTrans)]. The
name of this action space stands for Transition between BFs.
The input space of BFTrans is discretized by using the set of
BF centers; the obtained discrete action space is DCOB [see
Fig. 3 (DCOB)]. Thus, each action in DCOB is a trajectory
that is Directed to the Center Of a target BF.

WF-DCOB explores continuous actions around each dis-
crete action of DCOB. The aim of WF-DCOB is to acquire
higher performance than DCOB while maintaining the wide
exploration ability. In addition, WF-DCOB is designed to
be stable and speedy in the learning-from-scratch case,
which is comparable to DCOB. The key ideas of WF-DCOB
are: (1) restricting the exploration in regions around the
corresponding DCOB’s actions [see Fig. 3 (DCOB) and
(WF-DCOB) to compare the regions and the actions], and
(2) the exploration policy selects an action from a set of
representative actions in the regions. (1) makes the learning
process stable, and (2) maintains the wide exploration abil-
ity of DCOB; actually, though (1) restricts the exploration,
WF-DCOB explores a policy wider than DCOB. To accom-
plish these ideas, we utilize wire-fitting (Baird and Klopf
1993) as the value function approximator. Section 5 describes
how WF-DCOB achieves these ideas.

Note that only a single action is illustrated in Fig. 3. The
obtained policy by an RL method with DCOB generates a
path consisting of a sequence of actions in DCOB that maxi-
mizes the return (Fig. 2b). Roughly speaking, the problem of
an RL method with DCOB is similar to a path-planning task
in a gridworld; namely, finding the best action for each state

Fig. 4 Illustration of how an action in the BFTrans is executed. First,
a reference trajectory is generated, then it is abbreviated. The reference
trajectory may change the state greatly, so the obtained motion is coarse.
To make the motion fine, the trajectory is abbreviated

from an action set. The differences are that DCOB is used
as an action set, and NGnet is used for approximation over
a continuous state space. If there is a gap on the state space
due to an obstacle or a collision, the RL method can find a
path as a sequence of the DCOB actions that goes around
the gap. DCOB can cope with a configuration space of a
generic motion learning task such as crawling. Thus, DCOB
is applicable to generic motion learning tasks. This is also
the same as the WF-DCOB case. In the following sections,
we describe the details of the proposed methods.

4 BFTrans: action converter using basis functions

This section introduces the action converter BFTrans which
is the core system of DCOB and WF-DCOB. BFTrans con-
verts an input action u = (g, qtrg) into a sequence of control
commands, where g ∈ R is called the interval factor that
determines the speed of motion, and qtrg ∈ Q is the tar-
get point of a reference trajectory. A predefined low-level
controller outputs the command sequence to follow the tra-
jectory. The key technique used here is that the command
sequence is terminated after a short period during which the
state of the robot moves into the BF nearest to the starting
state of the action. This abbreviation makes the command
sequence suitable for the resolution of the given BFs. Thus,
BFTrans provides a continuous action space for RL methods.
Let UBFTrans � R×Q denote the space.

4.1 Features

The features of BFTrans are summarized as follows:

(F1) The dynamics of the actions improves learning a policy.
(F2) The actions can reflect the range of the state space, such

as joint angle limitations.

123

Auton Robot (2013) 34:327–346 331

(F1) is satisfied by abbreviating the trajectory which adjusts
each action for the resolution of BFs. Let us see Fig. 4. The
original trajectory is a curve segment of two points in the
state space. On average, the length of a curve segment is
comparatively long (Fig. 4 “Reference Trajectory”). Let us
recall that a motion is generated by a sequence of BFTrans’
input actions. If a motion of the robot were represented by a
sequence of such long curve segments, the whole trajectory
of the motion would become coarse; namely, the trajectory
would consist of less number of actions. Increasing the num-
ber of actions makes the variety of motions wider, which
may improve the performance. In order to make a motion
fine, each curve segment is abbreviated (Fig. 4 “Abbreviated
Trajectory”).

On the other hand, making each trajectory too short may
cause a long learning time. A moderate length is the distance
between two adjacent BFs, since the representable fineness of
a policy over the state space is almost the same as the resolu-
tion of the BF set. Thus, the original trajectory is abbreviated
to the length between the starting point and the nearest BF.

About (F2), if we select a target point inside the range
of the state space, the action rarely exceeds the range. This
feature is kept for discretizing the target point space by the
BF set, since in many cases, the BFs are allocated inside the
range of the state space.

4.2 Assumptions

BFTrans assumes the following:

(A) Each BF k ∈ K has a fixed center μk ∈ X .
(B) The state x ∈ X is observable.
(C) Q, CP(x), and CD(x) are predefined. Q: a controllable

subspace of X where a reference trajectory is calcu-
lated. CP(x): a function that extracts q ∈ Q from a
state x ∈ X by q = CP(x) : X → Q. CD(x): a func-
tion that extracts the derivative of q ∈ Q from a state
x ∈ X by q̇ = CD(x).

(D) A low-level controller ũ(t) = Ctrl(x(t), qD(t + δt))
is given to follow the reference trajectory qD(t) (e.g.
a PD-controller), where ũ denotes a control command,
Ũ denotes a control command space, and δt denotes a
control time-step.

In this paper, we use NGnet which satisfies (A). Radial BFs
are an alternative to NGnet. The reason of assuming the cen-
ters to be fixed is to ensure the convergence of learning.

The assumptions (B), (C) and (D) are actually require-
ments on the task domain including the robot configuration.
Let us consider to apply BFTrans to a crawling task of a
humanoid robot whose objective is to move forward as far as
possible. The proposed methods are applicable to POMDPs
(partially observable Markov decision processes) when we

Table 1 Examples of BFTrans setup

No. Observable state (x) CP CD Ctrl Class

#1 (pg, q, vg, q̇) q q̇ PD MDP

#2 (q, q̇) q q̇ PD POMDP

#3 (q) q 0 P POMDP

pg: the global position and rotation, q: the joint angles, vg: the global
linear and angular velocity, q̇: the joint angular velocities, PD/P: a
PD-/P-controller.

employ a TD(λ) method; the detailed discussion is given in
Sect. 8. Thus, there are some variations in choosing the above
assumptions. Table 1 shows the possible combinations. In
#1, the whole state is observable, which satisfies the Markov
property. Meanwhile in #2, only the joint angles and the joint
angular velocities are observable; in #3, only the joint angles
are observable. The cases #2 and #3 are POMDPs. The best
policy may be obtained with the full-observation (#1), but
in an real robot case, sometimes it is difficult to observe
the whole state. In such case (#2 or #3), the applicability to
POMDPs is desirable. The case #1 is verified in the motion
learning tasks of a simulated humanoid robot, and the case
#3 is verified in the crawling task of a real robot.

4.3 Algorithm outline

When an action un = (g, qtrg) is input to BFTrans at step n (at
time tn), a reference trajectory is calculated. The duration of
this trajectory is abbreviated to a shorter period. Then the tra-
jectory is followed by the low-level controller which outputs
the command sequence. The whole procedure is described
in Algorithm 1.

Algorithm 1: Executing an action in the BFTrans

Input:Action un = (g, qtrg) ∈ R×Q = UBFTrans,
starting state xn = x(tn)

1: Estimate the time interval TF of the trajectory from g, xn , qtrg

2: Generating a reference trajectory with which the state changes
from xn to qtrg in TF: qD(tn + ta), ta ∈ [0, TF]

3: Abbreviating the trajectory to ta ∈ [0, TN] ⊆ [0, TF] (TN � TF)
4: Following the trajectory with the low-level controller which out-

puts a command sequence: ũ(tn + ta) = Ctrl(x(tn + ta), qD(tn +
ta + δt)), ta ∈ [0, TN)

5: The action un is finished; n← n + 1

The reference trajectory qD(tn + ta), ta ∈ [0, TF] is
designed so that the state changes from the starting state
xn = x(tn) to the target qtrg in the time interval TF. We
represent the trajectory with a cubic function. The detailed
calculation of the trajectory is described in Appendix B.

Instead of using the time interval TF, we introduce the
interval factor g into an action to represent exclusively
the speed of the action. This parameter is suitable to explore
the motion-speed space and is easily discretized. The speed
of the action depends on TF, xn , and qtrg. Thus, we

123

332 Auton Robot (2013) 34:327–346

define g as the quotient of TF and the maximum norm of(
qtrg − CP (xn)

)
. Namely, we calculate TF with

TF = g
∥∥qtrg − CP(xn)

∥∥∞ (2)

where ‖ · ‖∞ denotes a maximum norm1.
The reference trajectory is abbreviated by reducing the

terminal time; its detail is described in the following section.
The abbreviated trajectory is followed by the low-level con-
troller as ũ(t) = Ctrl

(
x(t), qD(t + δt)

)
, t ∈ [tn, tn+TN). In

the simulated small-humanoid experiments, we use a simple
PD-controller. In the real robot experiments, we use con-
trollers embedded on each joint actuator.

4.4 Abbreviating trajectory

We abbreviate the reference trajectory as qD(tn + ta), ta ∈
[0, TN] where 0 < TN � TF to make the action suitable
for the resolution of BFs. Here, the abbreviation cuts the
trajectory at ta = TN, where TN is a duration in which the
state changes into the BF nearest to the starting state2.

The abbreviation is performed as follows: (1) estimate
DN(xn) as the distance between two neighboring BFs around
the start state xn , (2) calculate TN from the ratio of DN(xn)

and the distance between xn and qtrg. Here, we employ a
maximum norm as a distance rather than the L2-norm since
the trajectory of each joint is calculated independently.

Using the output of BFs φ(xn), the distance DN(xn) is
estimated by

DN(xn) = (dN(1), dN(2), . . . , dN(|K|))� φ(xn) (3)

where dN(k) denotes the distance between the center μk of
a BF k and the center of the nearest BF from k. Then, TN is
defined by

TN(xn, un) = min

(
1,

Fabbrv DN(xn)

‖qtrg − CP(xn)‖∞
)

TF, (4)

where Fabbrv denotes a scaling factor which typically takes
1. The detailed calculation is described in Appendix B.

5 DCOB and WF-DCOB

This section defines DCOB and WF-DCOB based on
BFTrans.

1 For a vector x = (x1, . . . , xD), the maximum norm is defined as
‖x‖∞ = maxm |xm |.
2 We do not abbreviate the trajectory by observing the output of BFs
since when the dynamics is a POMDP, using the BFs output to terminate
the action may complicate the dynamics more.

5.1 Discrete action space DCOB

A discrete action space DCOB is defined by discretizing the
input space of BFTrans. The key idea is that we can discretize
the Q space with the centers of the BFs. Though these centers
are originally distributed on the X space, the space converter
CP : X → Q can transfer them onto the Q space.

Let us recall that an action in BFTrans is denoted by u =
(g, qtrg) ∈ R×Q. The interval factor space is discretized by
a small discrete set of real numbers I = {g1, g2, . . . }, and
Q is discretized by a set of the centers of the BFs, {CP(μk) |
k ∈ K}. Let ADCOB denote DCOB: ADCOB = I × K. An
action an in DCOB selected at step n (at time tn) is executed
as follows:
Algorithm 2: Executing an action in DCOB
Input:Action an = (g, k) ∈ I ×K = ADCOB,

starting state xn = x(tn)

1: un ← (g, CP(μk))

2: Execute BFTrans with un (Algorithm 1)

The size of DCOB is |I||K|. Since we use I whose num-
ber of elements is small (typically, around 3), the size of
DCOB is a few times the number of BFs. Thus, if the num-
ber of BFs is reduced by a BF allocation technique, the size
of DCOB is also reduced.

5.2 WF-DCOB

WF-DCOB directly learns a policy in the continuous action
space BFTrans with wire-fitting. Thus, WF-DCOB has a
potential to exceed performance with DCOB. However, in
general, learning in a continuous action space has problems
in initializing parameters and problems with learning stabil-
ity. WF-DCOB tries to solve these issues by restricting the
exploration around the actions in DCOB. That is to say, each
action in DCOB is a point in BFTrans; WF-DCOB searches
inside a region around the point. Figure 5 illustrates the com-
parison of DCOB and WF-DCOB in terms of qtrg.

To do this, we prepare the control wires whose num-
ber is the same as the size of DCOB; let W = {i |i =
1, . . . , |ADCOB|} denote the set of control wires. Then, we
initialize each control wire i ∈ W so that Ui is equal to the
corresponding action of DCOB. During learning, each con-
trol wire is kept inside the constraint region. To define the
constraint region, a set of interval factor ranges is defined
for WF-DCOB as

IR � {(gS
m, gE

m) | 0 < gS
m � gE

m, m = 1, 2, . . . , |I|}, (5)

where gS
m ∈ R and gE

m ∈ R denote the boundary values of the
range. For Ui = (gi , qtrg

i), the interval factor gi is constrained

inside (gS
i , gE

i). The target point qtrg
i is constrained inside

a hypersphere of radius dN(kdcob
i) centered at CP(μkdcob

i
),

where kdcob
i denotes a target BF of the corresponding action

123

Auton Robot (2013) 34:327–346 333

Fig. 5 Illustration of the comparison of DCOB (top) and WF-DCOB
(bottom). In both methods, the trajectory is calculated in the same man-
ner as the BFTrans. The difference is that in DCOB, the target state is
the fixed center of a selected BF, while in WF-DCOB, the target state
can change but is constrained around a corresponding BF

in DCOB. The details of the initialization and the constraints
are described in Appendix C.

5.2.1 Action selection for WF-DCOB

In order to accomplish the graph search-like (wide) explo-
ration, we introduce an action selection method like the
Boltzmann selection method for WF-DCOB. A control wire
i is assumed to be a discrete action whose action value is
qi (x), and one of the control wires is chosen by the Boltz-
mann selection method. Then the corresponding ui (x) is the
selected action. That is to say, a control wire i ∈W is selected
by the probability

π(i |x) = exp
(1

τ
qi (x)

)

∑
i ′∈W exp

(1
τ

qi ′(x)
) , (6)

where τ denotes a temperature parameter. As with Boltzmann
selection, letting τ = 0 gives the greedy policy.

6 Supplementary techniques: basis function allocation

Allocating BFs is a major factor of the learning performance,
especially in large domains. A set of BFs is used not only in
a value function approximator, but also in DCOB and WF-
DCOB. This section introduces three allocation methods:
grid allocation, spring-damper allocation, and dynamics-
based allocation. Grid allocation uses an exponential number
of BFs with respect to the dimensionality of a state space,
while the others can choose the number of BFs.

6.1 Grid allocation

This method allocates BFs on a grid where each dimension
of the state-action space is divided independently. Grid allo-
cation is widely used, e.g. (Matsubara et al. 2007), for ease
of use. However, since the number of BFs increases expo-
nentially w.r.t. the dimensionality of the state-action space,
applying this allocation method to large domains is difficult.

6.2 Spring-damper allocation

This method allocates a given number of BFs so that they
spread as widely as possible within a certain boundary. Since
this method enables us to decide the number of BFs, applying
it to large domains is easier than that of grid allocation. In
spring-damper allocation, first, we allocate BFs of the given
number randomly. The covariance matrix of each BF is con-
strained to Σ = σ 21 where 1 is a unit matrix, and σ ∈ R

is a positive value shared in every BF. Each BF is regarded
as a hypersphere of radius σ centered at the BF’s mean. The
boundary is defined by a minimum and a maximum value
of each dimension of the state space; if the state consists of
joint angles, the joint angle ranges are used as the boundary.
Then, the BFs are re-arranged so that the centers spread as
widely as possible and σ becomes as large as possible with-
out overlapping. This calculation uses pseudo-dynamics of
a spring-damper system. Though there is no guarantee of
converging without falling into a local maxima, this method
achieved a desired allocation in the preliminary experiments.
Its complete algorithm is described in (Yamaguchi 2011).

6.3 Dynamics-based allocation

Similar to the case of spring-damper allocation, we first
choose the number of BFs in dynamics-based allocation.
The dynamics-based method allocates BFs according to the
dynamics of the robot, while spring-damper method does not
consider the real dynamics of the robot. The required resolu-
tion of the action value function depends on a reward and the
dynamics. Thus, we consider that allocating BFs by using
the dynamics information generates a better set of BFs. This
idea is similar to the MOSAIC model (Wolpert and Kawato
1998; Doya et al. 2002).

Since we do not require an explicit dynamics model of
the robot, first, we generate a data set {x, ũ, v} by moving the
robot randomly; here, x is a state, ũ is a command, and v is a
velocity of next time step. Then, we train a dynamics model,

v =
∑

k∈K

(
Ak

(x
ũ

)
+ bk

)
φk(x;μk,Σk), (7)

with the data set. Here, {Ak, bk,μk,Σk |k ∈ K} denotes the
set of model parameters, and φk is a normalized Gaussian

123

334 Auton Robot (2013) 34:327–346

(eq. 1). The parameters are trained by EM algorithm with
unit manipulations (Sato and Ishii 2000)3 where the algo-
rithm starts with the given number of BFs |K|. Obtained
{μk,Σk |k ∈ K} is used in RL algorithm.

7 Experiments

This section demonstrates experimental comparisons of the
proposed methods and the conventional methods. There are
two domains as benchmarks: motion learning tasks of a sim-
ulated humanoid robot, and a motion learning task of a real
spider robot. Since each action space has a different duration,
the reward functions of the following tasks are calculated at
each time step t rather than at each action, in order to com-
pare the action spaces evenly. The reward for an action is
obtained by summing r(t) during the action.

7.1 Motion learning tasks of humanoid robot

First, we apply the proposed methods to motion learning tasks
of a small-size humanoid robot. Here, the robot learns two
motion learning tasks; the crawling task and the turning task.
The objective of each is to acquire the whole body motion.
Furthermore, several DoF configurations and BF alloca-
tions are compared in the crawling task. We employ DCOB,
WF-DCOB, a conventional discrete action space, and wire-
fitting.

7.1.1 Robot description

Experiments are performed in simulation using a dynamics
simulator ODE4. Figure 6 shows the simulation model of
the robot. Its height is 0.328 m. It weighs 1.20 kg. Each joint
torque is limited to 1.03 Nm. The dynamics simulation is
calculated with the time step δt = 0.2 ms.

7.1.2 DoF configurations and BF allocations

Here, we define a set of conditions consisting of a DoF con-
figuration and a BF allocation. Figure 7 illustrates the DoF
configurations. The conditions are defined as the following.
Here, each condition name indicates the DoF configuration
and the BF allocation. ‘Grid’ denotes grid allocation, ‘Dyn’
denotes dynamics-based allocation, and ‘SprDmp’ denotes
spring-damper allocation.

3-DoF-Grid: Each set of joint pairs {q1, q3, q4, q6},
{q8, q13}, {q9, q10, q14, q15} is coupled, which gives a

3 Actually, unit division and unit deletion are implemented.
4 Open Dynamics Engine: http://www.ode.org/

Fig. 6 Simulation model of the humanoid robot

bilateral symmetry. The BFs are allocated on a 5× 5× 5
grid over the reduced joint angle space. The number of
BFs is 125.
4-DoF-Grid: Each set of joint pairs {q1, q3}, {q4, q6},
{q8, q9, q10}, {q13, q14, q15} is coupled, which results in
a single DoF on each leg. The BFs are allocated on a
4 × 4 × 4 × 4 grid over the reduced joint angle space.
The number of BFs is 256.
5-DoF-Dyn: Each set of joint pairs {q1, q4}, {q3, q6},
{q8, q13}, {q9, q14}, {q10, q15} is coupled, which gives a
bilateral symmetry. The BFs are allocated by dynamics-
based allocation method over the reduced state space.
Specifically, 202 BFs are allocated5.
5-DoF-Grid: The DoF configuration is the same as
5-DoF-Dyn. The BFs are allocated on a 3×3×3×3×3
grid over the joint angle space. The number of BFs is
243.
5-DoF-SprDmp: The DoF configuration is the same as
5-DoF-Dyn. The BFs are allocated by spring-damper
allocation method over the reduced joint angle space.
Specifically, 300 BFs are allocated.
6-DoF-SprDmp: A coupled joint pair {q7, q12} is added
to the 5-DoF, which also gives a bilateral symme-
try. The BFs are allocated by spring-damper allocation
method over the reduced joint angle space. Specifically,
300 BFs are allocated.
7-DoF-SprDmp: A coupled joint pair {q2, q5} is added
to the 6-DoF, which also gives a bilateral symme-
try. The BFs are allocated by spring-damper allocation
method over the reduced joint angle space. Specifically,
600 BFs are allocated.

Note that in each condition, the set of BFs is commonly
used in a value function approximator (LFA-NGnet and wire-

5 We start the EM algorithm with 200 BFs, and obtain the 202 trained
BFs.

123

http://www.ode.org/

Auton Robot (2013) 34:327–346 335

Fig. 7 DoF configurations of
the humanoid robot. Each
encircled number shows an
index of dimension; joints with
the same numberare coupled

fitting) and to generate DCOB and WF-DCOB. In ND-DoF
configuration, the command input ũ is a ND-dimensional
joint torque. The state is given as follows:

x = (c0z, qw, qx , qy, qz, q�1:ND
,

ċ0x , ċ0y, ċ0z, ωx , ωy, ωz, q̇�1:ND
)�, (8)

where (c0x , c0y, c0z) denotes the position of the center-of-
mass of the body link, (qw, qx , qy, qz) denotes the rotation
of the body link in quaternion, (ωx , ωy, ωz) denotes the rota-
tional velocity of the body link, and q1:ND denotes the joint
angle vector of the ND-DoF configuration. The reason for
the absence of c0x and c0y from state x is that a policy for the
crawling task or the turning task does not have to depend on
the global location of the robot.

In the crawling task, every condition is used. In the turn-
ing task, only 4-DoF-Grid is used since the other conditions
constrain the robot’s movement in the sagittal plane, i.e. the
robot cannot turn.

7.1.3 Task description

Crawling task: The objective of the crawling task is to move
forward along the x-axis as far as possible. According to this
objective, the reward is designed as follows:

r(t) = rmv(t)− rsc(t)− rfd(t), (9)

rmv(t) = 50ċ0x (t), (10)

rsc(t) = 2× 10−5‖ũ(t)‖, (11)

where rmv(t) is the reward for forward movement, rsc(t) is
the step cost, rfd(t) is the penalty for falling down. rfd(t) takes
4 if the body or the head link touches the ground, otherwise
it takes 0. The penalty for falling down is given once in each
action. Each episode begins with the initial state where the
robot is standing up and stationary, and ends if t > 20s or
the sum of reward is less than −40.

Crawling task for 4-DoF: Since the robot is not symmet-
rically constrained only in the 4-DoF configuration, a penalty
for rotational movement should be added. Similarly, reward
for forward movement is changed. Concretely, we use the
following reward definition only for the 4-DoF case:

r(t) = r ′mv(t)− rrt(t)− rsc(t)− rfd(t), (12)

r ′mv(t) = 50(ċ0x (t)ez1(t)+ ċ0y(t)ez2(t)), (13)

rrt(t) = 5|ωz(t)|, (14)

where r ′mv(t) is the reward for forward movement, (ez1, ez2,

ez3)
� is the z-component of the rotation matrix of the body

link6, rrt is the penalty for rotation. The step cost rsc(t) and the
falling down penalty rfd(t) are as defined above. In the 4-DoF
configuration, each episode begins with the initial state where
the robot lies down and is stationary, and ends if t > 20s or
the sum of reward is less than −40.

Turning task: The objective of the turning task is to rotate
on the z-axis as fast as possible. According to this objective,
the reward is designed as follows:

r(t) = rtn(t)− rfw(t)− rsc(t)− r ′fd(t), (15)

rtn(t) = 2.5ωz(t), (16)

rfw(t) = 0.5‖(ċ0x , ċ0y)‖, (17)

where rtn(t) is the reward for turning, rfw(t) is the penalty for
the x-y global movement, and r ′fd(t) is the penalty for falling
down. r ′fd(t) takes 4 if the body link touches the ground, and
takes 0.1 if the head link touches the ground; otherwise it
takes 0. r ′fd(t) is given once in each action. The step cost
rsc(t) is the same as that in the crawling task. Each episode
begins with the initial state where the robot lies down and is
stationary, and ends if t > 20s or the sum of reward is less
than −40.

7.1.4 Configurations of action spaces and function
approximators

The following methods are compared.
DCOB: For each ND-DoF configuration, DCOB is con-

figured as follows:

CP(x) = q1:ND , (18)

CD(x) = q̇1:ND , (19)

Ctrl(x(t), qD(t + δt))

= KP{qD(t + δt)− CP(x(t))} − KDCD(x(t)), (20)

I = {0.075, 0.1, 0.2}, (21)

6 The term, ċ0x (t)ez1(t) + ċ0y(t)ez2(t), indicates the velocity of the
body link projected into the (ez1, ez2, 0) direction; that is, the x–y direc-
tion from the body link to the head link.

123

336 Auton Robot (2013) 34:327–346

Table 2 Number of BFs, actions, and control wires

DoF and BF allocation BFs DCOB WF-DCOB Grid3 WF3 Grid5 WF5

3-DoF-Grid 125 375 375 27 27 125 125

4-DoF-Grid 256 768 768 81 81 625 625

5-DoF-Dyn 202 606 606 243 243 3,125 3,125

5-DoF-Grid 243 729 729 243 243 – –

5-DoF-SprDmp 300 900 900 243 243 – –

6-DoF-SprDmp 300 900 900 729 729 – –

7-DoF-SprDmp 600 1,800 1,800 2,187 2,187 – –

BFs: number of BFs, DCOB/Grid3/Grid5: number of actions, WF-DCOB/WF3/WF5: number of control wires. Dash (—) denotes that the condition
is not used in the DoF.

Fabbrv =
{

0.5 (ND = 4),

1 (otherwise),
(22)

where q1:ND denotes the joint angle vector, q̇1:ND

denotes the joint angular velocities, KP = 5.0 Nm/rad, and
KD = 1.6 Nms/rad. Fabbrv = 0.5 for ND = 4 is determined
through preliminary experiments. As a function approxima-
tor, LFA-NGnet is used.

WF-DCOB: For each ND-DoF configuration, the
WF-DCOB’s parameters CP, CD, Ctrl and Fabbrv are the
same as DCOB. The other parameter is

IR = {(0.05, 0.1), (0.1, 0.2), (0.2, 0.3)}. (23)

Wire-fitting is used as a function approximator.
Grid Action Set (Grid3, Grid5): “Grid action set” AG

is defined as an action set where the displacement of a tar-
get joint angle is discretized by a grid. For each ND-DoF
configuration, AG is defined as follows:

AG =
{
�q | �q = (δq1, . . . , δqND)�,

δq1,...,ND ∈ {0,±�ϕ, . . . ,±Ngrid−1
2 �ϕ}} (24)

where Ngrid denotes the number of divisions of each joint
angle, and �ϕ = π/12 is a unit of the displacement. The size
of AG is |AG| = (Ngrid)

ND. In the following experiments,
Ngrid = 3 and 5 are used, which are represented as Grid3 and
Grid5 respectively. Each element �q ∈ AG is converted to
a command sequence as follows:

qD(t) = CP(x(t))+�q (25)

ũ(t) = KP{qD(t)− CP(x(t))} − KDCD(x(t)) (26)

where t = tn + ta, ta ∈ [0, TG), and TG = 0.1s denotes
a duration of an action. As a function approximator, LFA-
NGnet is used.

Wire-fitting (WF3, WF5): This is a continuous version
of grid action set, where the action of the RL agent is the
displacement of target joint angles. The action value function
is approximated by wire-fitting. The parameters of the control
wires {Ui |i ∈ W} are initialized by the elements of grid
action set {�q} defined above. Similarly, Ngrid = 3 and 5 are

used, which are represented as WF3 and WF5 respectively.
An action u selected by the RL agent is converted into the
target joint angles by

qD(t) � CP(x(t))+ u. (27)

Then, a control command is computed from qD(t) in the
same manner as grid action set. The duration of an action is
TWF = 0.1s.

Table 2 shows the number of BFs, actions, and control
wires in each DoF configuration.

7.1.5 Configuration of RL method

As an RL method, we use Peng’s Q(λ)-learning for every
condition. We also employ replacing trace. The parameters
of the Q(λ)-learning are also consistent for every condition:
γ = 0.9, λ = 0.9. We use a decreasing step-size parame-
ter α = α0 exp(−δα Neps) for updating, and a decreasing
temperature parameter τ = τ0 exp(−δτ Neps) for Boltzmann
selection where Neps denotes the episode number. These
parameters are determined through preliminary experiments:
α0 = 0.3, δα = 0.002, τ0 = 5, δτ = 0.004.

7.1.6 Results

Figure 8 shows the learning curves of the motion learning
tasks; in each graph, the mean of the return over 15 runs is
plotted per episode. In all results, DCOB and WF-DCOB
acquire a motion of outstanding performance compared to
the other methods, and the learning speed of DCOB or WF-
DCOB is the fastest in most cases. The possible reasons are
considered as follows:

(R1) BFTrans provides a suitable action space for RL meth-
ods as mentioned in Sect. 4.1.

(R2) Utilization of BFs for the action space discretization
(DCOB) or for the parameter initialization and con-
straints (WF-DCOB) reduces the learning time or the
learning instability.

123

Auton Robot (2013) 34:327–346 337

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8 Resulting learning curves of the crawling task. In every graph, each curve shows the mean of the return over 15 runs per episode

123

338 Auton Robot (2013) 34:327–346

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9 Snapshots of acquired motions with DCOB

(R1) enables the robot to acquire higher performance; in
Fig. 8f, g, the sizes of DCOB and Grid3 are almost the
same, but DCOB outperforms Grid3. Similarly, in Fig. 8b,
the sizes of DCOB and Grid5 are almost the same, but DCOB
outperforms Grid5. We can verify (R2) in Fig. 8c where the
number of BFs is reduced by dynamics-based allocation. The
size of DCOB is smaller than that of Grid5, which enables a
fast convergence. Still, the acquired performance of DCOB
is the highest in most cases.

Next, we compare the results of DCOB and WF-DCOB. In
lower DoFs (3, 4, and 5), DCOB and WF-DCOB are almost
the same, or DCOB acquires better performance than WF-
DCOB (Figs. 8b, e). In addition, DCOB learns faster than
WF-DCOB in Fig. 8b. On the other hand, in higher DoFs (6
and 7), WF-DCOB is superior to DCOB; WF-DCOB learns
faster in Fig. 8f, g), WF-DCOB acquires better performance
in Fig. 8g.

The following possible reason of them is considered:
in higher DoFs, the number of actions in DCOB is rela-
tively small for the DoF, which leads to a coarse explo-
ration. WF-DCOB explores continuous actions around the
actions in DCOB, which makes exploration finer. Thus, WF-
DCOB performed better than DCOB in the higher DoF cases.

Meanwhile in the lower DoFs, the number of actions in
DCOB was considered to be enough for a fine exploration. In
such cases, exploring continuous actions improves the perfor-
mance minimally. Moreover, due to the instability of learning
in a continuous action space, WF-DCOB is inferior to DCOB
in some cases. This consideration can also explain the results
of 5-DoF-Dyn, 5-DoF-Grid, and 5-DoF-SprDmp (Fig 8c–e).

In some runs, there was a period of episodes where the
return had higher value than one at the final episode. How-
ever, because of instability of such a policy, the policy con-
verged to a stable one that had a lower return value. For
instance, we can see this effect in Fig. 9a. The reason why
DCOB has high peak between 500 and 750 episodes is that
one of 15 runs had a much higher return value during this
period.

Figure 9 shows the snapshots of acquired motions with
DCOB. Though the same set of movable joints are used in
3-DoF and 5-DoF, the difference of joint-coupling or BF allo-
cation changes the behavior of the robot (Fig. 9a, c–e). The
behavior is also changed by increasing movable joints as seen
in 6 and 7-DoFs (Fig. 9f, g). The crawling behavior with 4-
DoF configuration shows a slight turning (Fig. 9b, h); this is
because the joint-coupling is not symmetric. Comparing the

123

Auton Robot (2013) 34:327–346 339

Fig. 10 King Spider (ROBOTIS Bioloid) which has 18 DoF

crawling behavior of 4-DoF configuration with the turning
behavior of the same configuration, we can find that the dif-
ference of reward function generates the behavior (Fig. 9b,
h). Please see also the accompanying video.

7.2 Crawling task of real robot

As an application to real robot control, experiments of the
crawling task are demonstrated. The robot used here is
Bioloid of the King Spider model (Fig. 10), made by ROBO-
TIS co.

7.2.1 Robot and environment description

The robot has 18 joints where an actuator is attached to each
joint. We use a 5-DoF configuration; specifically, each set of
joint pairs {q1, q2}, {q3, q4, q5, q6}, {q7, q8}, {q9, q10, q11,

q12}, {q15, q16} is coupled, which gives a bilateral symmetry.
The other joints are fixed to a neutral angle; q13 = q14 =
q17 = q18 = 0.

The command input ũ is a 5-dimensional vector of the
target joint angles. The observable state includes only joint
angles: x = (q1, q3, q7, q9, q15)

�. That is, it does not include
a global position and orientation. The absence of these obser-
vations may break the Markov property of the task. The
reasons for this absence are that (1) we can verify the applica-
bility to POMDPs (Partially Observable Markov Decision
Processes), and (2) using the Bioloid product as it is makes
verification experiments easier for other researchers. We uti-
lize NGnet whose BFs are allocated on a 3× 3× 3× 3× 3
grid over the state space, i.e. the reduced joint angle space.

Besides the joint angle sensors, we use an infrared ray (IR)
sensor to observe the distance from the robot to an obsta-
cle. This observation is used to calculate the reward. Let dIR

denote the distance (actually, dIR is processed by a low-pass
filter).

The experimental environment is configured as shown in
Fig. 11. The robot is put in front of a wall; the IR sensor

Fig. 11 Setup of experimental environment

measures the distance from the robot to the wall. The robot
is connected to a computer7 and communicates with it using
a serial protocol. In each δt = 0.1 s, the command input ũ
(the target joint angles) is sent to the robot.

7.2.2 Task description

The objective of the crawling task is to move forward as far
as possible. So, the reward is designed as follows:

r(t) = vIR(t)− 0.15, (28)

where vIR(t) denotes the velocity of the robot calculated
from dIR(t). Thus, in the summation of the reward (return),
the vIR(t) term indicates a moving distance and the constant
(0.15) term denotes a penalty for elapsed time. Each episode
begins with an initial pose (q1 = −q2 = −π/9, q3,...,18 =
0), and ends if t > 50s, if the robot touches the wall (deter-
mined by the operator), or if some problems arise.

7.2.3 Configurations of action spaces and function
approximators

The following methods are compared.
DCOB: DCOB is configured as follows:

CP(x) = q1:5, (29)

CD(x) = 05, (30)

I = {0.5}, (31)

Fabbrv = 1, (32)

where q1:5 denotes the joint angle vector, and 05 denotes the
5-dimensional zero vector. Note that the command input of
the robot is the target joint angles, thus, Ctrl is considered
to be embedded in the robot. That is, we use qD(t + δt) as a
command input. As a function approximator, LFA-NGnet is
used.

7 A laptop PC: Pentium M 2GHz CPU, 512MB RAM, Debian Linux.

123

340 Auton Robot (2013) 34:327–346

Fig. 12 Resulting learning curves of the crawling task of King Spider
(raw data). Each curve shows the return per episode in a run. To see
the tendency of each curve, a low-pass filter with a time constant of ten
episodes is applied

Fig. 13 Averaged learning curves of the crawling task of King Spider.
Each curve shows the mean of the return over four runs from 0 to 77th
episodes. Error bar denotes the±1 standard deviation. A low-pass filter
with a time constant of ten episodes is also applied

Grid action set (Grid3): Grid action set AG, defined in
Sect. 7.1, is employed. The parameters are �ϕ = π/12, and
TG = 0.1s. The number of divisions is set as Ngrid = 3,
which is referred to as Grid3. LFA-NGnet is also used as a
function approximator.

7.2.4 Configuration of RL method

As the RL method, we use Peng’s Q(λ)-learning for every
method. We also employ replacing trace. The parameters of
the Q(λ)-learning are consistent for every condition:γ = 0.9,
λ = 0.9. We use a decreasing step-size parameter α =
α0 exp(−δα Neps) for updating, and a decreasing temperature
parameter τ = τ0 exp(−δτ Neps) for Boltzmann selection
where Neps denotes the episode number. These parameters
are determined through preliminary experiments: α0 = 0.3,

δα = 0.002, τ0 = 0.1, δτ = 0.004.

7.2.5 Results

For each method, four runs are performed. Figure 12 shows
the obtained learning-curves. Figure 13 shows the mean

Fig. 14 Performance of the acquired motion of King Spider: the aver-
age and the ±1SD of the return over the last ten episodes

Fig. 15 Snapshots of an acquired crawling motion of King Spider
(4.8, 5.4, 6.0, 7.2 s)

Fig. 16 Resulting learning curves of the crawling task of Dinosaur.
Each curve shows the return per episode in a run

and the ±1SD of four runs from 0 to 77th episodes, where
every run is performed. Figure 14 shows the mean and the
±1SD in the last ten episodes. Figure 13 shows that with
DCOB, a higher return is obtained around 20–30th episodes,
which is faster than Grid3. Meanwhile, Fig. 14 indicates
that the performance of the acquired motions with DCOB
is superior to that of Grid3. Therefore, DCOB also outper-
forms Grid3 both in learning speed and acquired motion per-
formance. Figure 15 demonstrates a motion acquired with
DCOB. Please see also the accompanying video.

7.2.6 Demonstration of Dinosaur

Finally, DCOB is applied to a crawling task of the Dinosaur
model of Bioloid. In this case, the task setup is almost the

123

Auton Robot (2013) 34:327–346 341

Fig. 17 Snapshots of an acquired crawling motion of Dinosaur
(7.2, 7.6, 8.0, 8.6 s)

same as the King Spider case except for the number of actu-
ators. The differences are (1) the reward is multiplied by five
since Dinosaur is slower than King Spider because of its
shorter legs, (2) a penalty is given when the robot falls down
(the operator determines the falling down event), and (3) the
IR sensor is mounted on the head.

Figure 16 shows the resulting learning curves in three runs,
and Fig. 17 shows snapshots of an acquired crawling motion.
Learning speed is slower than that of the King Spider case.
A possible reason is that Dinosaur sometimes falls down,
which makes the task more difficult than the task with King
Spider.

8 Discussion

This section discusses the theoretical basis of BFTrans and
the related work.

8.1 Theoretical basis of BFTrans

8.1.1 Markov property

The convergence of some RL methods depends on the
Markov property of the task, e.g. (Tsitsiklis and Roy 1996,
1997), thus, we clarify the Markov property of the task using
BFTrans.

BFTrans converts the control command space ũ ∈ Ũ to
the action space u ∈ U . The time sequence, the state tran-
sition probability, and the reward function change with this
conversion. The time sequence changes from a continuous
time to a discrete time associated with the action sequence.
The discrete time is defined by

t0 = 0, tn =
n−1∑

n′=0

TNn′, (33)

where TNn denotes the duration of the action un at step n. We
can define the new reward function as

Rn =
tn+TNn∫

tn

r(t)dt, (34)

where r(t) is the reward at time t . If the original state tran-
sition probability depends only on the current state and the

control input, i.e. P(x′|x, ũ), the new state transition prob-
ability depends only on the current state and the current
action: P(xn+1|xn, un). This is because the reference tra-
jectory of the action in BFTrans’ input space is determined
by only xn and un , and thus, the command sequence ũ(t),
t ∈ [tn, tn + TNn′) depends only on xn and un . Therefore, if
the original task has the Markov property, the converted task
also has the Markov property.

Note that DCOB also has the same property, while this is
not the case with WF-DCOB. This is caused by the utilization
of a nonlinear function approximator (wire-fitting) in WF-
DCOB. As far as the authors know, there is no RL method
that generally guarantees its convergence with a nonlinear
function approximator.

8.1.2 Computational cost

The computational cost of the generating trajectory step and
the following trajectory step is O(dim(Q)). The abbreviating
trajectory step8 requires O(|K|2) to compute {dN(k)|k ∈ K},
but {dN(k)} stays constant during learning with fixed BFs.
Thus, we can pre-compute {dN(k)}. Eventually, the abbrevi-
ating trajectory step requires O(|K|). Thus, the total compu-
tational cost of each BFTrans action is O(|K|) (in general,
dim(Q) < |K|). Note that this cost is the same as the cost of
evaluating all BFs, which is required in each action selection.

8.2 Applicability

The assumptions of the proposed methods are mentioned in
Sect. 4.2. These requirements and the applicability of the
RL method decide the applicability of the proposed meth-
ods. The proposed methods do not sacrifice the Markov
property of a task as discussed in the previous section.
Though the convergence of Sarsa(λ) with a linear func-
tion approximator is proven by Tsitsiklis and Roy (1997)
while that of Q(λ)-learning is not, the both algorithms prac-
tically work well in MDPs (Markov Decision Processes).
Furthermore, the TD(λ) methods work well even in POMDPs
(Partially Observable MDPs); e.g. Loch and Singh are empir-
ically studied the applicability of the table-lookup Sarsa(λ)
in POMDPs (Loch and Singh 1998). From our experience,
Q(λ)-learning with a linear function approximator also works
well in POMDPs. Thus, the proposed methods are considered
to be able to handle POMDPs practically.

Based on this discussion, let us consider the examples
of applicable robots and tasks. From our experiments, it is
possible to apply the proposed methods to learning a whole-
body motion of an articulated robot, such as a humanoid
robot and a spider robot. In this case, we have some choices

8 We assume that a simple PD-controller is used as the low-level
controller.

123

342 Auton Robot (2013) 34:327–346

of the observable state. At least, we need to include the joint
angles in the observable state; on the other hand, we can
omit the global position and orientation. When applying the
methods to a navigation task of a omniwheel mobile robot,
we will choose the global position as the observable state.
However, since our methods require a conversion CP from
the observable state to a controllable subspace of the state,
there are some domains to which it is difficult to apply. For
example, handling a wheeled robot (other than a omniwheel)
is not straightforward; as the state, we may choose the global
position and orientation, and the linear and angular velocities,
but we need to use a trick on the conversion CP.

8.3 Related work

The most remarkable contribution of this paper is achiev-
ing the graph search-like exploration (Fig. 1b) even in large
domains by cooperating with an action value function-based
RL method. As far as we know, there are only few researches
achieving the graph search-like exploration in large domains.
Most researches use a simple exploration policy, such as
a policy using Gaussian noise, which may cause a narrow
exploration like a trajectory-wise exploration (Fig. 1a). Such
a method cannot explore enough the state-action space in a
large domain. Thus, we consider that such a poor exploration
is not suitable for the learning-from-scratch case of high-DoF
robots.

A disadvantage of the proposed methods is the assumption
of fixed BFs. Optimizing the parameters of BFs sometimes
can prevent the effects of the curse of dimensionality. For
instance, learning the nonlinear parameters of the sigmoid
functions in a neural network significantly reduces the
approximation error, more so than in the case of learning
only the linear weights of the network (Barron 1993). DCOB
assumes that the given BFs have already prevented the curse
of dimensionality, but this assumption may not be always sat-
isfied. Some RL researches reported that updating not only
the linear weights of NGnet but also the means and the covari-
ance matrices can improve learning (Morimoto and Doya
1998; Kondo and Ito 2004).

However, though the assumption of fixed BFs is a disad-
vantage, this assumption makes learning stable. Under this
assumption, we can maintain the Markov property of the task.
In the rest of this section, we discuss the related work from
various points of view.

8.3.1 Via-point representation

Miyamoto et al. (2004) proposed an RL method with via-
point representation. Both WF-DCOB and the via-point rep-
resentation are similar in that they have explicit target points
of the state space and optimize the target points. However,
the RL method with via-point representation uses a simple

exploration noise. The advantage of DCOB and WF-DCOB
is the graph search-like exploration.

8.3.2 RL methods using action converter

Using an RL-compatible action space instead of the com-
mand space is a common approach in RL applications. In
such a method, an action selected by the RL policy is con-
verted into a sequence of control commands. A typical way
is using a PD controller and training an RL agent to learn its
target value, e.g. (Morimoto and Doya 1998). Using a cen-
tral pattern generator (CPG) and letting an RL agent learn its
parameters is effective in learning rhythmic motions, such as
walking (e.g. Nakamura et al. 2007). The proposed methods
(DCOB and WF-DCOB) are applicable to episodic tasks,
such as jumping, that are difficult to learn with CPG.

Ijspeert et al. (2002) proposed nonlinear dynamic motor
primitives for robot control. Later, Peters et al. (2003) devel-
oped an RL method to optimize the primitives’ parame-
ters. This framework is similar to WF-DCOB, since both
methods use RL-compatible action spaces and employ RL
methods designed for a continuous action space. However,
the primitive-based approach assumes that the parameters
are initialized through an imitation learning framework.
As we described in the introduction section, this method
leads to a trajectory-wise exploration. Meanwhile, WF-
DCOB provides a proper parameter initialization method for
learning-from-scratch cases, and provides a graph search-
like exploration method, which enables the robot to explore
widely in the possible behavior space.

Theodorou et al. (2010) proposed a novel RL method PI2

which is applicable to an RL problem in large domain. PI2

seems to be a promising method; actually, it was applied to
learning a jumping behavior of a 12-DoF robot dog. How-
ever, in its experiments, a Gaussian noise was also used for
exploration. In addition, the application to learning a jumping
behavior used a demonstration generated manually. Thus, it
is suspicious how the method works in the learning-from-
scratch case of this paper.

8.3.3 Hierarchical RL methods

DCOB and WF-DCOB resemble hierarchical RL methods
since we can consider the action converter BFTrans as a lower
layer controller and the RL agent as a higher level controller.

Asada et al. (1996) proposed a method to construct a state
space based on actions. The advantage of this method is con-
structing the state space in execution time. However, if we
apply the method to a large domain, the number of segments
may become huge. In addition, if the task has a POMDP prop-
erty like the spider robot case, it is suspicious that the state
segmentation converges. The proposed methods provide a
reasonable solution to such problems.

123

Auton Robot (2013) 34:327–346 343

Morimoto et al. (Morimoto and Doya 2001) proposed a
hierarchical RL method for robot learning which seems to
be a realistic solution. Its disadvantage is that we need to
adjust a hierarchical structure manually, which may require
a complex tuning in large domains.

Sutton et al. (1999) proposed options which are gener-
alized actions of primitive and macro actions under the RL
framework. Our DCOB can be regarded as one kind of the
options specialized for robot control. There is research on
finding options or subgoals automatically (Mcgovern and
Barto 2001; Menache et al. 2002; Stolle 2004), however the
discovery of the optimal options is still an open problem. We
consider that DCOB is a practical solution to it.

8.3.4 Parti-game algorithm

Moore and Atkeson (1995) proposed parti-game algorithm
as an RL method for continuous state-action spaces. This
method assumes a local controller which moves a robot to
a near state, and finds an optimal policy in partitions on the
state space where each action is a transition to a neighboring
partition. Its feature is that partitioning of the state space
is also optimized, which is superior to DCOB, where the
allocation of the given BFs is not changed.

However, the applicable tasks of parti-game algorithm are
limited; a task should have a goal state, which should be
explicitly given. It is therefore not applicable to the crawling
task used in this paper.

9 Conclusion

This paper proposed a discrete action space DCOB for RL
methods to handle domains of higher dimensional control
input space. DCOB is generated from a set of BFs given
to approximate a value function. DCOB is a discrete space
but it has the ability to acquire high performance motions.
Moreover, using the dynamics-based BF allocation or the
spring-damper BF allocation reduces the size of DCOB,
which improves the learning speed. In addition, a method
called WF-DCOB was proposed to enhance the performance,
where wire-fitting was employed to search for continuous
actions around each discrete action of DCOB. In WF-DCOB,
to relax the learning instability of wire-fitting, a parameter
initialization and a constraint method were proposed. In addi-
tion, an action selection method like Boltzmann selection was
proposed in order to accomplish a graph search-like (wide)
exploration.

The proposed methods were applied to the simulation
tasks (the crawling and the turning task of the humanoid
robot) and the real robot task (the crawling task of Bioloid).
In the simulation tasks, DCOB and WF-DCOB were com-
pared with conventional action spaces. Moreover, in the

humanoid’s crawling task, the methods were compared in
different DoF configurations and different BF-allocation
methods. In every experiment, DCOB and WF-DCOB out-
performed the other methods.

Furthermore, we found that the difference in performance
between DCOB and WF-DCOB depended on the condi-
tions, such as a DoF configuration. From the results of the
humanoid’s crawling task, the guidelines for choosing DCOB
or WF-DCOB are as follows: use DCOB if a relatively suffi-
cient number of BFs can be allocated in a state space, e.g. the
lower DoF cases; use WF-DCOB if it is difficult to allocate
a sufficient number of BFs, e.g. the higher DoF cases.

Acknowledgments Part of this work was supported by a Grant-in-
Aid for JSPS, Japan Society for the Promotion of Science, Fellows
(22·9030).

Appendix

Appendix A Wire-fitting

For a continuous state x ∈ X and a continuous action u ∈ U ,
wire-fitting is defined as:

Q(x, u) = lim
ε→0+

∑
i∈W (di + ε)−1qi (x)
∑

i∈W (di + ε)−1 , (35)

di = ‖u− ui (x)‖2 + C
[
max
i ′∈W

(qi ′(x))− qi (x)
]
. (36)

Here, a pair of the functions qi (x) : X → R and ui (x) :
X → U (i ∈ W) is called a control wire; wire-fitting is
regarded as an interpolator of the set of control wires W .
C is the smoothing factor of the interpolation; we choose
C = 0.001 in the experiments. Any function approximator
is available for qi (x) and ui (x). For any kind of the function
approximators, one of qi (x), i ∈W is equal to maxu Q(x, u)

and the corresponding ui (x) is the greedy action at x.

max
u

Q(x, u) = max
i∈W

(qi (x)), (37)

arg max
u

Q(x, u) = ui (x)

∣∣∣
i=arg maxi ′∈W (qi ′ (x))

. (38)

Namely, the greedy action at state x is calculated only by
evaluating qi (x) for i ∈W .

We use NGnet for qi (x) and a constant vector for ui (x),
that is, we let qi (x) = θ�i φ(x) and ui (x) = Ui , where φ(x)

is the output vector of the NGnet. The parameter vector θ

is defined as θ� = (θ�1 , U�1 , θ�2 , U�2 , . . . , θ�|W |, U�|W |), and
the gradient ∇θ Q(x, u) can be calculated analytically.

Figure 18 shows an example of wire-fitting where both of
x ∈ [−1, 1] and u ∈ [−1, 1] are a one-dimensional vec-
tor. There are two control wires (dashed lines) and three
basis functions (dotted lines). The BFs (NGnet) are located
at x = (−1), (0), (1) respectively, and the parameters of the

123

344 Auton Robot (2013) 34:327–346

Fig. 18 Example of wire-fitting

wire-fitting are θ1 = (0.0, 0.6, 0.0)�, U1 = (−0.5), θ2 =
(0.0, 0.3, 0.6)�, U2 = (0.5). Each control wire is plotted
as (x, u1(x), q1(x)) and (x, u2(x), q2(x)) respectively. Each
×-mark is put at (x, ui� (x), qi� (x))

∣∣
i�=arg maxi qi (x)

which
shows the greedy action at x.

Appendix B Calculations of BFTrans

Generating trajectory

The reference trajectory qD(tn+ ta), ta ∈ [0, TF] is designed
so that the state changes from the starting state xn = x(tn)

to the target qtrg in the time interval TF. We represent the
trajectory with a cubic function,

qD(tn + ta) = c0 + c1ta + c2t2
a + c3t3

a , (39)

where c0,...,3 are the coefficient vectors. These coefficients
are determined by the boundary conditions,

qD(tn) = CP(xn), qD(tn + TF) = qtrg,

q̇D(tn + TF) = 0, q̈D(tn + TF) = 0, (40)

where 0 denotes a zero vector.

Abbreviating trajectory

The abbreviation is performed as follows: (1) estimate
DN(xn) as the distance between two neighboring BFs around
the start state xn , (2) calculate TN from the ratio of DN(xn)

and the distance between xn and qtrg.
To define DN(xn), for each BF k, we first calculate dN(k)

as the distance between its center μk and the center of the
nearest BF from k. Then, we estimate DN(xn) by interpolat-
ing {dN(k)|k ∈ K} with the output of the BFs at xn .

dN(k) is calculated by

kN(k) = arg mink′∈K,k′ �=k‖CP(μk′)− CP(μk)‖∞, (41)

dN(k) = max
(‖CP(μkN(k))− CP(μk)‖∞, dmin k

)
, (42)

where dmin k ∈ R is a positive constant to adjust dN(k) when
‖CP(μkN(k))−CP(μk)‖∞ is too small. For NGnet, we define

it as dmin k =
√

λQ
k where λQ

k is the maximum eigenvalue of

the covariance matrix ΣQ
k on the Q space9. Note that we can

pre-compute {dN(k)|k ∈ K} for fixed BFs.
Using the output of BFs φ(xn), DN(xn) is estimated by

DN(xn) = (dN(1), dN(2), . . . , dN(|K|))�φ(xn) (43)

Finally, TN is defined by

TN(xn, un) = min
(

1,
Fabbrv DN(xn)

‖qtrg − CP(xn)‖∞
)

TF. (44)

Appendix C Initialization and constraints of WF-DCOB

Initializing wire-fitting parameters

For a control wire i ∈ W , we use adcob
i to denote the cor-

responding action in DCOB: adcob
i = (gdcob

i , kdcob
i). Let

(gS
i , gE

i) denote the range of the interval factor which includes
gdcob

i . For each control wire i ∈W , its parameter is defined

as Ui = (gi , qtrg
i) and is initialized by

gi ← gS
i + gE

i

2
, (45a)

qtrg
i ← CP(μkdcob

i
). (45b)

The other parameters of the control wires {θi |i ∈ W} are
initialized by zero, since, in a learning-from-scratch case, we
do not have prior knowledge of the action values.

Constraints on wire-fitting parameters

For Ui = (gi , qtrg
i), the interval factor gi is constrained inside

(gS
i , gE

i), and the target point qtrg
i is constrained inside a

hypersphere of radius dN(kdcob
i) centered at CP(μkdcob

i
). Here,

dN(kdcob
i) denotes the distance to the nearest BF from kdcob

i

defined by Eq. 42. Specifically, the parameter Ui = (gi , qtrg
i)

of each control wire i ∈W is constrained by

if gi < gS
i then gi← gS

i,

if gi > gE
i then gi← gE

i,

if ‖diff‖∞ > dN(kdcob
i)then.

9 ΣQ
k is calculated from the original covariance matrix Σk (on the X

space) as follows. For ease of calculation, let CP(x) = ĈPx where ĈP is

a constant matrix. The converted covariance matrix is ΣQ
k = ĈPΣkĈ

�
P .

123

Auton Robot (2013) 34:327–346 345

qtrg
i ← CP(μkdcob

i
)+ dN(kdcob

i)
diff
‖diff‖∞ , (46)

where

diff � qtrg
i − CP(μkdcob

i
). (47)

These constraints are applied after each update of an RL
algorithm.

References

Asada, M., Noda, S., & Hosoda, K. (1996). Action-based sensor space
categorization for robot learning. In The IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS ’96) (pp. 1502–
1509).

Baird, L.C., & Klopf, A.H. (1993). Reinforcement learning with
high-dimensional, continuous actions. Technical Report WL-TR-93-
1147, Wright Laboratory, Wright-Patterson Air Force Base.

Barron, A. (1993). Universal approximation bounds for superpositions
of a sigmoidal function. IEEE Transactions on Information Theory,
39(3), 930–945. doi:10.1109/18.256500.

Doya, K., Samejima, K., Katagiri, K., & Kawato, M. (2002). Multiple
model-based reinforcement learning. Neural Computation, 14(6),
1347–1369. doi:10.1162/089976602753712972.

Gaskett, C., Fletcher, L., & Zelinsky, A. (2000). Reinforcement learn-
ing for a vision based mobile robot. In The IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’00).

Ijspeert, A., & Schaal, S. (2002). Learning attractor landscapes for learn-
ing motor primitives. In S. Becker, S. Thrun, & K. Obermayer (Eds.),
Advances in neural information processing systems (pp. 1547–1554).
Cambridge: MIT Press.

Kimura, H., Yamashita, T., & Kobayashi, S. (2001). Reinforcement
learning of walking behavior for a four-legged robot. In Proceedings
of the 40th IEEE Conference on Decision and Control. Portugal.

Kirchner, F. (1998). Q-learning of complex behaviours on a six-legged
walking machine. Robotics and Autonomous Systems, 25(3–4), 253–
262. doi:10.1016/S0921-8890(98)00054-2.

Kober, J., & Peters, J. (2009). Learning motor primitives for robotics.
In The IEEE International Conference on Robotics and Automation
(ICRA’09) (pp. 2509–2515).

Kondo, T., & Ito, K. (2004). A reinforcement learning with evolution-
ary state recruitment strategy for autonomous mobile robots control.
Robotics and Autonomous Systems, 46(2), 111–124.

Loch, J., & Singh, S. (1998). Using eligibility traces to find the
best memoryless policy in partially observable markov decision
processes. In Proceedings of the Fifteenth International Conference
on Machine Learning. (pp. 323–331).

Matsubara, T., Morimoto, J., Nakanishi, J., Hyon, S., Hale, J.G., &
Cheng, G. (2007). Learning to acquire whole-body humanoid CoM
movements to achieve dynamic tasks. In The IEEE International
Conference on Robotics and Automation (ICRA’07). (pp. 2688–
2693). doi:10.1109/ROBOT.2007.363871.

Mcgovern, A., & Barto, A.G. (2001). Automatic discovery of subgoals
in reinforcement learning using diverse density. In The Eighteenth
International Conference on Machine Learning. (pp. 361–368). San
Mateo, CA: Morgan Kaufmann.

Menache, I., Mannor, S., & Shimkin, N. (2002). Q-cut - dynamic dis-
covery of sub-goals in reinforcement learning. In ECML ’02: Pro-
ceedings of the 13th European Conference on Machine Learning (pp.
295–306). London: Springer.

Miyamoto, H., Morimoto, J., Doya, K., & Kawato, M. (2004). Rein-
forcement learning with via-point representation. Neural Networks,
17(3), 299–305. doi:10.1016/j.neunet.2003.11.004.

Moore, A. W., & Atkeson, C. G. (1995). The parti-game algorithm
for variable resolution reinforcement learning in multidimensional
state-spaces. Machine Learning, 21(3), 199–233. doi:10.1023/A:
1022656217772.

Morimoto, J., & Doya, K. (1998). Reinforcement learning of dynamic
motor sequence: Learning to stand up. In The IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS’98).
(pp 1721–1726).

Morimoto, J., & Doya, K. (2001). Acquisition of stand-up behav-
ior by a real robot using hierarchical reinforcement learning.
Robotics and Autonomous Systems, 36(1), 37–51. doi:10.1016/
S0921-8890(01)00113-0.

Nakamura, Y., Mori, T., Sato, M., & Ishii, S. (2007). Reinforcement
learning for a biped robot based on a CPG-actor-critic method.
Neural Networks, 20(6), 723–735. doi:10.1016/j.neunet.2007.01.
002.

Peng, J., & Williams, R. J. (1994). Incremental multi-step Q-learning.
In International Conference on Machine Learning. (pp. 226–232).

Peters, J., Vijayakumar, S., & Schaal, S. (2003). Reinforcement learning
for humanoid robotics. In IEEE-RAS International Conference on
Humanoid Robots. Karlsruhe, Germany.

Sato, M., & Ishii, S. (2000). On-line EM algorithm for the normalized
Gaussian network. Neural Computation, 12(2), 407–432.

Sedgewick, R., & Wayne, K. (2011). Algorithms. Boston: Addison-
Wesley.

Stolle, M. (2004). Automated discovery of options in reinforcement
learning (Master’s thesis, McGill University).

Sutton, R., & Barto, A. (1998). Reinforcement Learning: An Introduc-
tion. Cambridge: MIT Press. Retrieved from http://citeseer.ist.psu.
edu/sutton98reinforcement.html.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learn-
ing. Artificial Intelligence, 112, 181–211.

Takahashi, Y., & Asada, M. (2003). Multi-layered learning systems for
vision-based behavior acquisition of a real mobile robot. In Proceed-
ings of SICE Annual Conference 2003 (pp. 2937–2942).

Tham, C. K., & Prager, R. W. (1994). A modular Q-learning architecture
for manipulator task decomposition. In The Eleventh International
Conference on Machine Learning (pp. 309–317).

Theodorou, E., Buchli, J.,& Schaal, S. (2010). Reinforcement learning
of motor skills in high dimensions: A path integral approach. In
The IEEE International Conference on Robotics and Automation
(ICRA’10) (pp. 2397–2403). doi:10.1109/ROBOT.2010.5509336.

Tsitsiklis, J. N., & Roy, B. V. (1996). Feature-based methods for large
scale dynamic programming. Machine Learning, 22, 59–94.

Tsitsiklis, J. N., & Roy, B. V. (1997). An analysis of temporal-difference
learning with function approximation. IEEE Transactions on Auto-
matic Control, 42(5), 674–690.

Uchibe, E., Doya, K. (2004). Competitive-cooperative-concurrent rein-
forcement learning with importance sampling. In The International
Conference on Simulation of Adaptive Behavior: From Animals and
Animats (pp. 287–296).

Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward
and inverse models for motor control. Neural Networks, 11(7),
1317–1329.

Yamaguchi, A. (2011). Highly modularized learning system for behav-
ior acquisition of functional robots. Ph.D. Thesis, Nara Institute of
Science and Technology, Japan.

Zhang, J., & Rössler, B. (2004). Self-valuing learning and generalization
with application in visually guided grasping of complex objects.
Robotics and Autonomous Systems, 47(2), 117–127.

123

http://dx.doi.org/10.1109/18.256500
http://dx.doi.org/10.1162/089976602753712972
http://dx.doi.org/10.1016/S0921-8890(98)00054-2
http://dx.doi.org/10.1109/ROBOT.2007.363871
http://dx.doi.org/10.1016/j.neunet.2003.11.004
http://dx.doi.org/10.1023/A:1022656217772
http://dx.doi.org/10.1023/A:1022656217772
http://dx.doi.org/10.1016/S0921-8890(01)00113-0
http://dx.doi.org/10.1016/S0921-8890(01)00113-0
http://dx.doi.org/10.1016/j.neunet.2007.01.002
http://dx.doi.org/10.1016/j.neunet.2007.01.002
http://citeseer.ist.psu.edu/sutton98reinforcement.html
http://citeseer.ist.psu.edu/sutton98reinforcement.html
http://dx.doi.org/10.1109/ROBOT.2010.5509336

346 Auton Robot (2013) 34:327–346

Akihiko Yamaguchi received
the BE degree from the Kyoto
University, Kyoto, Japan, in
2006, and the ME and the
PhD degrees from Nara Insti-
tute of Science and Technology
(NAIST), Nara, Japan, in 2008
and 2011, respectively. From
April 2010 to July in 2011, he
was with NAIST as a JSPS, Japan
Society for the Promotion of
Science, Research Fellow. From
August 2011 to present, he is
with NAIST as an Assistant Pro-
fessor of the Robotics Labora-

tory in the Graduate School of Information Science. His research inter-
ests include motion learning of robots, reinforcement learning applica-
tion to robots, machine learning, and artificial intelligence. From 2010,
he is managing the open source project of reinforcement learning, SkyAI
(skyai.org).

Jun Takamatsu received the
Ph.D. degree in Computer Sci-
ence from the University of
Tokyo, Japan, in 2003. After
working in the Institute of Indus-
trial Science, the University of
Tokyo, he joined Nara Insti-
tute of Science and Technol-
ogy (NAIST), Japan in 2008.
At present, he is an associate
professor in Graduate School
of Information Science, NAIST.
His research interests are in 3D
shape modeling and analysis,
physics-based vision, and robot-

ics including learning-from-observation and task planning using feasi-
ble motion analysis.

Tsukasa Ogasawara received
the BE, ME and PhD degrees
from the University of Tokyo,
Tokyo, Japan, in 1978, 1980 and
1983, respectively. From 1983
to 1998, he was with the Elec-
torotechnical Laboratory, Min-
istry of International Trade and
Industry, Ibaraki, Japan. From
1993 to 1994, he was with the
Institute for Real-Time Com-
puter Systems and Robotics,
University of Karlsruhe, Karl-
sruhe, Germany, as a Humboldt
Research Fellow. In 1998, he

joined Nara Institute of Science and Technology, Nara, Japan, as a Pro-
fessor of the Robotics Laboratory in the Graduate School of Information
Science. His research interests include human-robot interaction, dex-
terous manipulation and biologically inspired robotics.

123

	DCOB: Action space for reinforcement learning of high DoF robots
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Reinforcement learning
	2.2 Function approximators
	2.2.1 Linear function approximator (LFA) with NGnet
	2.2.2 Wire-fitting

	3 Overview of proposed methods
	4 BFTrans: action converter using basis functions
	4.1 Features
	4.2 Assumptions
	4.3 Algorithm outline
	4.4 Abbreviating trajectory

	5 DCOB and WF-DCOB
	5.1 Discrete action space DCOB
	5.2 WF-DCOB
	5.2.1 Action selection for WF-DCOB

	6 Supplementary techniques: basis function allocation
	6.1 Grid allocation
	6.2 Spring-damper allocation
	6.3 Dynamics-based allocation

	7 Experiments
	7.1 Motion learning tasks of humanoid robot
	7.1.1 Robot description
	7.1.2 DoF configurations and BF allocations
	7.1.3 Task description
	7.1.4 Configurations of action spaces and function approximators
	7.1.5 Configuration of RL method
	7.1.6 Results

	7.2 Crawling task of real robot
	7.2.1 Robot and environment description
	7.2.2 Task description
	7.2.3 Configurations of action spaces and function approximators
	7.2.4 Configuration of RL method
	7.2.5 Results
	7.2.6 Demonstration of Dinosaur

	8 Discussion
	8.1 Theoretical basis of BFTrans
	8.1.1 Markov property
	8.1.2 Computational cost

	8.2 Applicability
	8.3 Related work
	8.3.1 Via-point representation
	8.3.2 RL methods using action converter
	8.3.3 Hierarchical RL methods
	8.3.4 Parti-game algorithm

	9 Conclusion
	Acknowledgments
	Appendix
	Appendix A Wire-fitting
	Appendix B Calculations of BFTrans
	Generating trajectory
	Abbreviating trajectory

	Appendix C Initialization and constraints of WF-DCOB
	Initializing wire-fitting parameters
	Constraints on wire-fitting parameters

	References

